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Abstract

We present a scalable framework for parallelizing greedy graph coloring algorithms on
distributed-memory computers. The framework unifies several existing algorithms and blends
a variety of techniques for creating or facilitating concurrency. The latter techniques in-
clude exploiting features of the initial data distribution, the use of speculative coloring and
randomization, and a BSP-style organization of computation and communication. We ex-
perimentally study the performance of several specialized algorithms designed using the
framework and implemented using MPI. The experiments are conducted on two different
platforms and the test cases include large-size synthetic graphs as well as real graphs drawn
from various application areas. Computational results show that implementations that yield
good speedup while at the same time using about the same number of colors as a sequential
greedy algorithm can be achieved by setting parameters of the framework in accordance

with the size and structure of the graph being colored. Our implementation is freely avail-
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able as part of the Zoltan parallel data management and load-balancing library.

Key words: Graph coloring, Parallel algorithms, Distributed memory computers,

Scientific computing, Experimental algorithmics

1 Introduction

In parallel scientific computing applications, computational dependency is often
modeled using a graph. A vertex coloring of the graph is then used as a routine
to identify independent subtasks that can be performed concurrently. Examples of
cases where coloring is used for such a purpose include iterative solution of sparse
linear systems [21], preconditioners [28], and eigenvalue computation [24]. The
computational (model) graph in such contexts is often already distributed among
processors and therefore the coloring needs to be performed in parallel. The alter-
native approach of gathering the graph on one processor for a subsequent sequential

coloring (by the same processor) is prohibitively time consuming or even infeasible
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due to memory constraints.

Theoretical results on graph coloring do not offer much good news: even approxi-
mating the chromatic number of a graph is known to be NP-hard [2]. For the compu-
tational graphs mentioned earlier as well as many other graphs that arise in practice,
however, greedy, linear-time, serial coloring heuristics give solutions of acceptable
quality and are often preferable to slower, iterative heuristics that may use fewer
colors. An example of an application in which greedy graph coloring algorithms
provide satisfactory solutions is the efficient computation of sparse derivative ma-

trices [14].

This paper is concerned with the design and implementation of efficient, parallel,
greedy coloring heuristics suitable for distributed-memory computers. The focus
is on the realistic setting where the number of available processors is several or-
ders of magnitude less than the number of vertices in the input graph. The goal is
to develop parallel algorithms that satisfy the following two requirements simulta-
neously. First, the execution time of an implementation decreases with increasing
number of processors. Second, the number of colors used by a parallel heuristic is

fairly close to the number used by a serial heuristic.

Since greedy coloring heuristics are inherently sequential, the task at hand is dif-
ficult. A similar task had been the subject of several other studies, including the
works of Gjertsen, Jones, and Plassmann [17,20]; Allwright et al. [1]; Finocchi,
Panconesi, and Silvestri [9]; and Johansson [19]. Some of these studies reported
discouraging speedup results [1,17,20], while others relied on only simulations
without providing actual parallel implementations [9,19]. In contrast, Gebremed-
hin, Manne, Pothen, and Woods reported encouraging speedup results on shared-

memory implementations of algorithms they developed in a series of inter-related



works [12,13,15]. Gebremedhin, Guerin-Lassous, Gustedt, and Telle[11] extended

one of these algorithms to the Coarse Grained Multicomputer model.

Building upon experiences from earlier efforts and introducing several new ideas,
in this paper, we present a comprehensive description and evaluation of an effi-
cient framework for parallelizing greedy coloring algorithms (preliminary results
of this work has been presented in [4]). The basic features of the framework could
be summarized as follows. Given a graph partitioned among the processors of a
distributed-memory machine, each processor speculatively colors the vertices as-
signed to it in a series of rounds. Each round consists of a tentative coloring and
a conflict detection phase. The coloring phase in a round is further broken down
into supersteps in which a processor first colors a pre-specified number s > 1 of
its assigned vertices sequentially and then exchanges recent color information with
other, relevant processors. In the conflict-detection phase, each processor exam-
ines those of its vertices that are colored in the current round for consistency and
identifies a set of vertices that needs to be recolored in the next round to resolve
any detected conflicts. The scheme terminates when no more conflicts remain to be

resolved.

We implemented (using the message-passing library MPI) several variant algo-
rithms derived from this framework. The various implementations are experimen-
tally analyzed so as to determine the best way in which various parameters of
the framework need to be combined in order to reduce both runtime and number
of colors. With this objective in mind, we attempt to answer the following ques-
tions. How large should the superstep size s be? Should the supersteps be run syn-
chronously or asynchronously? Should interior vertices be colored before, after, or
interleaved with boundary vertices? How should a processor choose a color for a

vertex? Should inter-processor communication be customized or broadcast-based?



The experiments are carried out on two different PC Linux clusters. The testbed
consist of large-size synthetic graphs as well as real graphs drawn from various ap-
plication areas. The computational results we obtained suggest that, for large-size,
structured graphs (where the percentage of boundary vertices in a given partition is

fairly low), a combination of parameters in which

(1) a superstep size in the order of a thousand is used,

(2) supersteps are run asynchronously,

(3) each processor colors its assigned vertices in an order where interior vertices
appear either strictly before or strictly after boundary vertices,

(4) aprocessor chooses a color for a vertex using a first-fit scheme, and

(5) inter-processor communication is customized,

gives an overall best performance. Furthermore, the choice of the coloring order
in (3) offers a trade-off between number of colors and execution time: coloring in-
terior vertices first gives a faster and slightly more scalable algorithm whereas an
algorithm in which boundary vertices are colored first uses fewer colors. The num-
ber of colors used even when interior vertices are colored first is fairly close to the
number used by a sequential greedy algorithm. For unstructured graphs (where the
vast majority of the vertices are boundary), good performance is observed by using
a superstep size close to a hundred in item (1), a broadcast based communication
mode in item (5), and by keeping the remaining parameters as in the structured
case. For almost all of the test graphs used in our experiments, the variants of our
framework with the aforementioned combination of parameters converged rapidly
(within at most six rounds) and yielded fairly good speedup with increasing number

of processors.

The remainder of this paper is organized as follows. In Section 2 we discuss rele-



vant previous work on parallel (and distributed) coloring. In Section 3 we present
the unifying parallelization framework proposed in this paper and discuss the sev-
eral directions in which it can be specialized. In Section 4 we present extensive
experimental results on our implementations of various specialized algorithms de-

signed using the framework. We conclude in Section 5.

2 Background

2.1 Sequential coloring

A coloring of a graph is an assignment of positive integers (colors) to vertices such
that every pair of adjacent vertices receives different colors. The graph coloring
problem, whose objective is to minimize the number of colors used, is known to
be NP-hard [10]. The current best known approximation ratio for the problem is
O(n%), where n is the number of vertices in the graph. Moreover, the prob-

lem is known to be not approximable within n'/7~¢ for any ¢ > 0 [2].

Despite these rather pessimistic results, greedy sequential coloring heuristics are
quite effective in practice [6]. A greedy coloring heuristic iterates over the set of
vertices in some order, at each step assigning a vertex the smallest permissible color
(a First Fit strategy). Vertex ordering techniques that have proven to be effective in
practice include Largest Degree First, Smallest Degree Last, Incidence Degree, and
Saturation Degree ordering; see [14] for a review of these techniques. Any greedy
heuristic that employs a First Fit coloring strategy uses no more (but often many

fewer) than A + 1 colors, where A is the maximum degree in the graph.



2.2 Related previous work on parallel coloring

A number of the existing parallel algorithms for greedy graph coloring rely on
Luby’s algorithm for computing a maximal independent set in parallel [23]. In
Luby’s algorithm, each vertex v in the input graph is assigned a random number
r(v), and an initially empty independent set [ is successively populated in the fol-
lowing manner. In each iteration, if a vertex v dominates its neighborhood N (v),
ie. if r(v) > r(w) for all w € N(v), then the vertex v is added to the set / and
v as well as the vertices in N(v) are deleted from the graph. This procedure is
then recursively applied on the graph induced by the remaining vertices, and the
process terminates when the graph becomes empty, at which point / is a maximal

independent set.

Luby’s parallel algorithm for computing a maximal independent set can easily be
turned into a parallel (or a distributed) coloring algorithm: Instead of removing a
dominating vertex v (a vertex whose random value is larger than the value of any of
its uncolored neighbors) and its neighbors N (v) from the current (reduced) graph,
assign the vertex v the smallest color that is not used by any of its already colored
neighbors. If one proceeds in this manner, then a pair of adjacent vertices surely
gets different colors, and once assigned, the color of a vertex remains unchanged

during the course of the algorithm.

Each of the works of Jones and Plassmann [20], Gjertsen et al. [17], and Allwright
et al. [1] is essentially a variation of this general scheme. In each algorithm, the
input graph is assumed to be partitioned among the available processors, and each
processor is responsible for coloring the vertices assigned to it. The interior vertices

on each processor are trivially colored in parallel (using a sequential algorithm



on each processor), and a variant of Luby’s coloring algorithm is applied on the
interface graph, the subgraph induced by the boundary vertices. A related algorithm
that could be considered here is one in which the interface graph is built on and
colored by one processor. In Section 3.4 we discuss this variation as well as a
variant of the Jones-Plassmann algorithm [20] that we have implemented for the

purposes of experimental comparison.

In the algorithms discussed in the previous paragraph, a pair of adjacent vertices is
necessarily colored at different computational steps. Thus, once the random func-
tion that is used for determining dominating vertices has been set, the longest mono-
tone path in the graph gives an upper bound on the parallel runtime of the algorithm.
As the work of Johansson [19] shows, this inherent sequentiality can be overcome
by using randomization in the selection of a color for a vertex. In particular, Johans-
son analyzed a distributed coloring algorithm where each processor is assigned ex-
actly one vertex and the vertices are colored simultaneously by randomly choosing
a color from the set {1,..., A+ 1}, where A is the maximum degree in the graph.
Since this may lead to an inconsistent coloring, the process is repeated recursively

on the vertices that did not receive permissible colors.

More recently, Finocchi et al. [9] have performed extensive (sequential) simulations
on a set of inter-related algorithms that each resemble Johansson’s algorithm. In the
basic variant of their algorithms, the upper-bound on the range of permissible colors
is initially set to be smaller than A + 1 and is increased later only when needed.
Another feature of their algorithm is that in a post-processing step at the end of
each round, Luby’s algorithm is applied on each subgraph induced by a color class.
Specifically, the post-processing step is used to find a maximal independent set of

vertices whose colors can be declared final.



2.3 Precursory work on parallel coloring

Each of the works surveyed in Section 2.2 has one or more of the following weak-
nesses: (1) no actual parallel implementation is given, (ii) the number of colors
used, although bounded by A + 1, is far from the number used by a sequential
greedy algorithm, or (iii) an implementation yields poor parallel speedup on un-
structured graphs. Overcoming these weaknesses, had been the subject of several
previous efforts in which at least a subset of the authors of the current paper have

been involved.

Gebremedhin and Manne [12] developed a simple, shared-memory parallel col-
oring algorithm that gave fairly good speedup in practice. In their algorithm, the
vertex set is equi-partitioned among the available processors and each processor
colors its assigned set of vertices in a sequential fashion, at each step assigning a
vertex the smallest color not used by any of its on- or off-processor neighbors; the
assigned color information is immediately made available to other processors by
writing to shared memory. Inconsistencies—which arise only when a pair of adja-
cent vertices residing on different processors is colored simultaneously —are then

detected in a subsequent parallel phase and resolved in a final sequential phase.

Gebremedhin, Manne, and Pothen [13] extended the algorithms in [12] to the distance-
2 and star coloring problems, models that occur in the computation of Jacobian and
Hessian matrices. The algorithms in [13] also used randomized techniques in select-
ing a color for a vertex to reduce the likelihood of conflicts. Gebremedhin, Manne,
and Woods [15] enhanced these algorithms by employing graph partitioning tools
to obtain more effective assignment of vertices to processors and by using vertex

orderings to minimize cache misses in a shared memory implementation.



In a different direction, Gebremedhin, Guérin-Lassous, Gustedt, and Telle [11] ex-
tended the algorithm in [12] to the Coarse Grained Multicomputer (CGM) model
of parallel computation, thus making the algorithm feasible for distributed-memory
architectures as well. The CGM model is a simplified version of the Bulk Syn-
chronous Parallel (BSP) model introduced by Valiant [32,3]. Besides paying atten-
tion to cost associated with non-local data access, the randomized as well as de-
terministic CGM-coloring algorithms proposed in [11]. Adopting the BSP model,
in the CGM-algorithms processors exchange information only after a group of ver-
tices (rather than a single vertex as in the shared-memory algorithm) have been
colored. The CGM-algorithms differ from their predecessor shared-memory algo-
rithm in that potential conflicts were identified a priori and dealt with in a recursive
fashion. However, we believe that a recursive implementation is likely be inefficient

in practice.

3 A Unifying Framework

Building upon ideas and experiences gained from the efforts mentioned in Sec-
tion 2.3, we have developed a framework for scalable parallel graph coloring on
distributed memory computers. In this section, we describe the framework in detail

and show how it helps unify several existing algorithms.

3.1 The Basic Scheme

We assume that the input graph is partitioned among the p available processors in
some reasonable way. Typically, this is achieved by employing a graph partitioning

tool such as Metis [22]. The partitioning used (regardless of how it is achieved) clas-
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sifies the vertices into two categories: interior and boundary. An interior vertex is a
vertex all of whose neighbors are located on the same processor as itself whereas a
boundary vertex has at least one neighbor located on a different processor. Clearly,
the subgraphs induced by interior vertices are independent of each other and hence
can be colored concurrently trivially. Parallel coloring of the remainder of graph,
however, requires inter-processor communication and coordination, and is a major

issue in the scheme being described.

At the highest level, our scheme proceeds in rounds. Each round consists of a ten-
tative coloring and a conflict detection phase. In the spirit of the BSP model, the
coloring phase of a round is organized as a sequence of supersteps ? , where each su-
perstep has distinct computation and communication sub-phases. Since the conflict
detection phase does not involve communication, it does not need to be organized

in supersteps.

In every superstep, each processor colors a pre-specified number s of vertices in a
sequential fashion, using color information available at the beginning of the super-
step, and then exchanges recent color information with other processors. In partic-
ular, in the communication phase of a superstep, a processor sends the colors of its
recently colored boundary vertices to other processors and receives relevant color
information from other processors. In this scenario, if two adjacent vertices located
on two different processors are colored in the same superstep, they may receive the

same color and cause a conflict.

The purpose of the second phase of a round is to detect conflicts and accumulate on
each processor a list of vertices to be recolored in the next round. Given a conflict-

edge, only one of its two endpoints needs to be recolored to resolve the conflict.

2 We use the word superstep in a looser sense than its usage in the BSP model.
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Algorithm 1 A Scalable Parallel Coloring Framework. Input: graph G = (V, E)
and superstep size s. Initial data distribution: V' is partitioned into p subsets
Vi, ..., Vy; processor P; owns V;, stores edges E; incident on V;, and stores the
identity of processors hosting the other endpoints of ;.

1: procedure SPCFRAMEWORK(G = (V, E), s)

2: on each processor P;,i € [ ={1,...,p}

3: for each boundary vertex v € V/ = {u|(u,v) € E;} do
4: Assign v a random number r(v) generated using v’s ID as seed
5: U, <V, > Uj; is the current set of vertices to be colored
6: while 3j € I, U; # 0 do
7: if U; # () then
8: Partition U; into ¢; subsets U, 1, U, o, ..., U, ,, each of size s
9: for k — 1to /; do > each k corresponds to a superstep
10: for each v € U, ; do
11: assign v a “permissible” color ¢(v)
12: Send colors of boundary vertices in Uj j, to other processors
13: Receive color information from other processors
14: Wait until all incoming messages are successfully received
15: R0 > R; is a set of vertices to be recolored
16: for each boundary vertex v € U; do
17: if 3 (v,w) € E; where ¢(v) = ¢(w) and r(v) < r(w) then
18: R; — R; U{v}
19: UZ — Rz
20: end on

21: end procedure

The vertex to be recolored is determined in a random fashion so that the workload
in the next round is distributed more or less evenly among the processors; we shall
shortly discuss how the random selection is done. The conflict detection phase does
not require communication since by the end of the tentative coloring phase every
processor has gathered complete information about the colors of the neighbors of
its vertices. The scheme terminates when every processor is left with an empty list
of vertices to be recolored. Algorithm 1 outlines this scheme with some more de-
tails. The scheme is hereafter referred to as Scalable Parallel Coloring Framework

(SPCFRAMEWORK).

In each round of SPCFRAMEWORK, the vertices to be recolored in the subsequent

round are determined by making use of a uniformly distributed random function

12



over boundary vertices, defined at the beginning of the scheme; interior vertices
need not be considered since they do not cause conflicts. For each conflict-edge de-
tected in a round, the vertex with the lower random value is selected to be recolored
while the other vertex retains its color (see the for-loop in Line 16 of SPCFRAME-
WORK). Notice that the set of vertices that retain their colors in a round in this
manner is exactly the set that would be obtained by running one step of Luby’s

algorithm (discussed in Section 2.2) on the set of vertices involved in conflicts.

In a distributed setting such as ours, the random numbers assigned to boundary
vertices need to be computed in a careful way in order to avoid the need for com-
munication between processors to exchange these values. The for-loop in Line 3
of SPCFRAMEWORK is needed for that purpose. There, notice that each processor
P; generates random values not only for boundary vertices in its own set V; but
also for adjacent boundary vertices residing on other processors. Since the (global)
unique ID of a vertex is used in the random number generation, the random value
computed for a vertex on one processor is the same as the value computed for the
same vertex on another processor. Thus processors avoid inquiring each other of

random values.

The coloring phase of a round is divided into supersteps (rather than communicat-
ing after a single vertex is colored) to reduce communication frequency and thereby
the associated cost. However, the number of supersteps used (or, equivalently, the
number of vertices colored in a superstep) is also closely related to the likelihood
of conflicts and consequently the number of rounds. The lower the number of su-
persteps the higher the likelihood of conflicts and hence the higher the number of
rounds required. Choosing a value for the parameter s that minimizes the overall
runtime is therefore a compromise between these two contradicting requirements.

An optimal value for s would depend on such factors as the size and density of the

13



input graph, the number of processors available, and the machine architecture and

network.

3.2 Variations of the Scheme

SPCFRAMEWORK has been deliberately presented in a general form. Here we dis-

cuss several ways in which it can be specialized.

3.2.1 Color selection strategies

In Line 11 of SPCFRAMEWORK, the choice of a color, permissible relative to the
currently available color information, can be made in different ways. The strategy
employed affects the number of colors used by the algorithm and the likelihood
of conflicts (and thus the number of rounds required by the algorithm). Both of
these quantities are desired to be as small as possible. A coloring strategy typically
reduces one of these quantities at the expense of the other. Here, we present two

strategies, dubbed First Fit (FF) and Staggered First-Fit (SFF).

In the FF strategy each processor P; chooses the smallest permissible color from
the set {1,...,C;}, where C;, initially set to be one, is the current largest (local)
color used. If no such color exists, C; is incremented by one and the new value of
C; is chosen as a color. In contrast, the SFF strategy relies on an initial estimate K
of the number of colors needed for the input graph, and each processor P; chooses
the smallest permissible color from the set { [%1 , ..., K}.If no such color exists,
then the smallest permissible color in {1,..., L%j} is chosen. If there still is no
such color, the smallest permissible color greater than K is chosen. Notice that,

unlike FF, the search for a color in SFF starts from different “base colors” for each
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processor. Therefore SFF is likely to result in fewer conflicts than FF. On a negative
side, the fact that the search for a color starts from a base larger than one makes

SFF likely to require more colors than FF.

The SFF strategy is similar to the strategy used in the algorithms of Finocchi et
al [9], specifically, to the variants they refer to as Brooks-Vizing coloring algorithms.
The essential difference between their color choice strategy and SFF is that in their
approach the color for a vertex is randomly picked out of an appropriate range,
whereas in SFF the smallest available color in a similar range is searched for and
chosen. Taking the comparison further, note that the formulation of SPCFRAME-
WORK is general enough to encompass the (entire) algorithms of Finocchi et al as
well as the algorithm of Johansson [19]. Specifically, one arrives at the latter algo-
rithms by letting the number of processors be equal to the number of vertices in the
graph (which implies a superstep size s = 1) and by choosing the color of a vertex

in Line 11 appropriately.

Other color selection strategies that can be used in SPCFRAMEWORK include: the
Least Used strategy where the (locally) least used color so far is picked so that
a more even color distribution is achieved, and the randomized methods of Ge-

bremedhin, Manne, and Pothen [13].

3.2.2 Coloring order

As mentioned earlier, the subgraphs induced by interior vertices are independent
of each other and can therefore be colored concurrently without any communi-
cation. As a result, in the context of SPCFRAMEWORK, interior vertices can be
colored before, after or interleaved with boundary vertices. SPCFRAMEWORK is

presented assuming an interleaved order, wherein computational load is likely to be
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evenly balanced and communication is expected to be more evenly spaced out in
time, avoiding congestion as a result. On the other hand, an interleaved order may
involve communication of a higher number of messages of smaller size, which
in turn degrades execution speed and scalability. Overall, a non-interleaved order,
wherein interior vertices are colored strictly before or after boundary vertices, is
likely to yield better performance. Furthermore, coloring interior vertices first is
likely to produce fewer conflicts when used in combination with a First Fit color-
ing scheme, since the subsequent coloring of boundary vertices is performed with
a larger spectrum of available colors. Coloring boundary vertices first might be ad-

vantageous when used together with the Staggered First Fit color selection strategy.

3.2.3 Vertex ordering strategies

Regardless of whether interior and boundary vertices are colored in separate or
interleaved order, SPCFRAMEWORK provides another degree of freedom in the
choice of the order in which vertices on each processor are colored in each round.
Specifically, in Line 10 of SPCFRAMEWORK, the given order in which the ver-
tices appear in the input graph, or any one of the effective (re)ordering techniques

discussed in Section 2.1 could be used.

3.2.4 Synchronous vs. asynchronous supersteps

In SPCFRAMEWORK, the supersteps can be made to run in a synchronous fashion
by introducing explicit synchronization barriers at the end of each superstep. An
advantage of this mode is that in the conflict detection phase, the color of a bound-
ary vertex needs to be checked only against off-processor neighbors colored during

the same superstep. The obvious disadvantage is that the barriers, in addition to
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the associated overhead, cause some processors to be idle while others are busy

completing their supersteps.

Alternatively, the supersteps can be made to run asynchronously, without explicit
barriers at the end of each superstep. Each processor would then only process and
use the color information that has been completely received when it is checking for
incoming messages. Any color information that has not reached a processor at this
stage would be deferred to a later superstep. Due to this, in the conflict detection
phase, the color of a boundary vertex needs to be checked against all of its off-

processor neighbors.

3.2.5 Inter-processor communication

Sending color information in Line 12 of SPCFRAMEWORK can be done in one of
two ways. First, a processor may send the color of a boundary vertex v to another
processor only if the latter owns at least one neighbor of the vertex v. Although
this helps avoid unnecessary communication, the customization of messages in-
curs computational overhead. An alternative approach is for a processor to send
the color information of all of its boundary vertices to every other processor with-
out customizing the messages (broadcast). This approach might be more efficient
when most of the boundary vertices have neighbors on a considerable portion of

the processors in the system.

3.3 How then should all these various options be combined?

As we have been discussing in Section 3.2, there are as many as five axes along

which SPCFRAMEWORK could be specialized. Each axis in turn offers at least two
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alternatives each having its own advantages and disadvantages. The final determi-
nation of how various options need to be put together to ultimately reduce both
runtime and number of colors used is bound to rely on experimentation since it
involves a complex set of factors, including the size and density of the input graph,
the number of processors employed and the quality of the initial partitioning among
the processors, and the specific characteristics of the platform on which the imple-
mentations are run. We have therefore experimentally studied the performance of
several specialized implementations of SPCFRAMEWORK on two different plat-

forms. The results will be presented in Section 4.

3.4 Related algorithms

For the purposes of comparison in our experiments, we have in addition imple-
mented three other algorithms related to SPCFRAMEWORK. We briefly describe
these algorithms in the sequel; in each case, the input graph is assumed to be al-

ready partitioned among the available processors.

3.4.1 Sequential Boundary Coloring Algorithm (SBC)

In this algorithm parallel processing is applied only on interior vertices, whereas
the graph induced by boundary vertices is constructed on one dedicated processor

and then colored sequentially by the same processor.

3.4.2 Sequential Conflict Resolution Algorithm (SCR)

This is a variant in which SPCFRAMEWORK is restricted to one round, and the

conflicts detected at the end of the round are resolved sequentially on one pro-
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cessor. Here, only the graph induced by boundary vertices involved in conflicts is
constructed on one dedicated processor and then colored sequentially by the same
processor. Note that the algorithm of Gebremedhin and Manne [12] is a special

case of SCR where the superstep size s is equal to identity.

3.4.3 Modified Jones and Plassmann Algorithm (JP)

This is a synchronous variant of the Jones-Plassmann (JP) algorithm first men-

tioned in Section 2.2.

Given a graph partitioned among the available processors, we describe the steps
applied on only boundary vertices; interior vertices are trivially colored in parallel
in a final phase. In each round j of the algorithm, each processor F; maintains a list
D; of dominating vertices— vertices that are assigned larger random numbers than
their uncolored neighbors. The vertices in the list D; are colored sequentially (by
processor F;) in the round j. Then, processor P; sends the recent color information
to processors who own vertices adjacent to elements of the list D;, and receives
corresponding information from other processors. For each off-processor vertex v
whose color is received, the list D; is updated in the following manner. If the col-
oring of the vertex v has made any uncolored on-processor neighbor vertex w of
the vertex v dominate the uncolored neighbors of w, then the vertex w is included
in the list D;. In this way only vertices that are dominated by off-processor neigh-
bors will be left uncolored at the end of the round j. The procedure is repeated in

subsequent rounds until all boundary vertices are colored.

We claim that SPCFRAMEWORK uses fewer or at most as many rounds as the JP
algorithm just described. Here is the argument. Suppose the two algorithms begin

a particular round £ with identical sets of uncolored vertices and random values.
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In SPCFRAMEWORK any vertex that needs to be recolored after the round £ must
have had an off-processor neighbor with the same color and with a larger random
value. Clearly, in the JP algorithm, such a vertex would not have been colored
in the round k. Thus the JP algorithm would require at least as many rounds as
SPCFRAMEWORK. To see that SPCFRAMEWORK could use fewer rounds than
the JP algorithm, consider a vertex v where each off-processor neighbor with a
larger random value (than that of v) receives a different color (from that of v). Then
v can keep its color as final in SPCFRAMEWORK, whereas v would not have been

colored in the JP algorithm.

4 Experiments

This section presents results from an experimental study of the various algorithms
discussed in the previous section. The algorithms are implemented in C using the

MPI message-passing library.

4.1 Experimental setup

Our experiments are conducted on two different platforms, each of which is a PC

cluster running Linux. Table 1 gives a summary of the essential features of the

platforms.
Name CPU Memory  Cache Size Network Bandwidth  Latency
12 900 MHz Itanium 2 4GB 512 KB Myrinet 2000 240 MB/s 11 ps
P4 2.4 GHz Pentium 4 4GB 1.5 MB Infiniband 888 MB/s 7 ps
Table 1

The two platforms used in the experiments.

The testbed consists of very large size real as well as synthetic graphs. The real

graphs (21 in total) are obtained from various application areas, including molecu-
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name V] degree sequential FF name V| degree sequential FF
max | avg colors Tro max | avg colors | T7r2
(ms) (ms)
Molecular Dynamics [30] Automotive [31]
popc-br-4 24916 43 20 21 28 hood 220,542 76 48 42 541
er-gre-4 36,573 42 25 19 48 msdoor 415,863 76 48 42 | 1020
apoal-4 92,224 43 25 20 120 ldoor 952,203 76 48 42 | 2362
Finite Elements [12] Civil Engineering [31]
144 144,649 26 15 12 137 pkustk10 80,676 89 52 42 213
598a 110,971 26 13 11 98 pkustk11 87,804 131 58 66 258
auto 448,695 37 15 13 462 pkustk13 94,893 299 69 57 317
Linear Car Analysis [27] Ship Section [27]
bmw3_2 227,362 335 49 48 561 shipsecl 140,874 101 54 48 382
bmw7st1 141,347 434 51 54 364 shipsec5 179,860 125 55 50 491
inlinel 503,712 842 72 51 | 1818 shipsec8 114919 131 57 54 322
Structural Engineering [31]
pwtk 217,918 179 52 48 564
nasasrb 54,870 275 48 41 130
ct20stif 52,329 206 51 49 132

Table 2
Structural properties of the real test graphs used in the experiments, classified according
to their application area and source. Also shown is the number of colors used by and the

runtime of a sequential First Fit algorithm run on single node of the Itanium 2 cluster.

lar dynamics, finite element, structural engineering, civil engineering, and automo-
tive and ship industry [12,31,27,30]. The left sections in each of the two parts of
Table 2 display data concerning structural properties of these graphs and the source
application areas. The right sections show certain computed values —the number of
colors used by and the runtime in milliseconds of a serial First Fit algorithm run
on a single node of the Itanium 2 cluster; these values will be used as normalizing

quantities in the presentation of relevant experimental results later in this section.

The synthetic graphs used in our experiment include instances drawn from three
different classes: random, planar and clique-based. The random graphs belong to
the Erd0s-Renyi class and are generated using the GTgraph Synthetic Graph Gen-
erator Suite [18]. The planar graphs are maximally planar—the degree of every
vertex is at least five—and are generated using the expansion method described
in [25]; the generator is a part of the graph suite for the Second DIMACS Chal-

lenge [29]. Finally, the clique-based graphs are obtained using P. Ross’s graph-
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name V] degree sequential FF name V| degree sequential FF
max | avg colors Tro Tpy max | avg colors Tro Tpy
(ms) | (ms) (ms) | (ms)
clique based [16] random [18]
clig-1 40,000 44 40 41 127 33 rand-1 | 400,000 27 10 9 461 626
clig-2 40,000 61 47 42 103 40 rand-2 | 400,000 61 30 15 | 1189 | 1750
clig-3 40,000 81 59 43 87 47 rand-3 | 400,000 84 50 20 | 1865 | 2857
planar [25] rand-4 | 400,000 | 112 70 25 | 2972 | 4074
plan-1 [ 4072937 40 [ 6 ] 9 [ 4780 ] 3725

Table 3
Structural properties of the synthetic test graphs used in the experiments. Also shown is the
number of colors used by and the runtime of a sequential First Fit algorithm run on a single

node of each of the two test platforms.

coloring generator, which is a part of the Test Problem Generators for Evolutionary
Algorithms [16]. Each of the clique-based graphs we generated consists of 1000
cliques of size 40 each, and the cliques are in turn interconnected by adding edges
according to a probabilistic function. Table 3 displays structural information about

the synthetic test graphs in a manner analogous to Table 2.

4.2 Algorithms compared

As discussed in Section 3.2, there are five orthogonal axes of specializations for
SPCFRAMEWORK. Further, there are multiple options to be considered along each
axis, making the possible combinations (configurations) exponentially many. We
describe below the configurations we have considered in our experiments either for

their potential performance worth or for benchmarking purposes.

For the initial data distribution, we consider two scenarios. In the first scenario, the
input graph is partitioned among the processors using the software tool Metis [22]
and its VMetis option. This option aims at minimizing both the number of boundary
vertices and the communication volume. In the second scenario, the input graph is

block partitioned, a case where the vertex set is simply equi-partitioned among the
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Name Color choice  Coloring order  Supersteps Communication
FIAC First Fit Interior first Asynchronous  Customized
FBAC First Fit Boundary first ~ Asynchronous  Customized
FUAC First Fit Un-ordered Asynchronous  Customized
FISC First Fit Interior first Synchronous Customized
SIAC Staggered FF  Interior first Asynchronous  Customized
SBAC Stagerred FF Boundary first ~ Asynchronous  Customized
FIAB First Fit Interior first Asynchronous  Broadcast
FBAB First Fit Boundary first ~ Asynchronous  Broadcast
FIAC-block | First Fit Interior first Asynchronous  Customized

Table 4
Configurations of SPCFRAMEWORK used in the experiments. In each algorithm, vertices
on each processor are colored in their natural order. “-block” indicate the inital data distri-

bution obtained via simple block partitioning.

processors without any effort to minimize cross-edges.

For vertex ordering, we use the natural order in which vertices appear in the input
graph. We forgo considering other vertex orderings, since our primary objective is
to study issues that have relevance to parallel performance. In terms of coloring
order, we consider three options: coloring interior vertices first, coloring bound-
ary vertices first or coloring in an un-ordered (interleaved) fashion. Each of the
remaining three axes—the manner in which supersteps are run, a color is chosen
for a vertex, and inter-processor communication is handled— offers two options.
Table 4 summarizes the configurations we have considered in our experiments and

the acronyms we use in refering to each.

In addition to the nine algorithms listed in Table 4, we have implemented and tested
the three algorithms—Sequential Boundary Coloring (SBC), Sequential Conflict

Resolution (SCR), and Modified Jones-Plassmann (JP)—discussed in Section 3.4.

Another configurable parameter of SPCFRAMEWORK is the size s of a superstep,
the number of vertices sequentially colored by a processor before communication
takes place. After several preliminary tests, we determined that a value of s close to
a thousand is a good choice for cases where customized communication is prefer-

able. Similarly, for cases where broadcast is a better choice, a value of s close to a
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hundred was found to be a good choice. For the results reported in the rest of this

section, we use s = 800 for the former case and s = 125 for the latter.

4.3 Results and discussion

For much of our experimental analysis in this section, we use performance profiles,
a generic tool introduced by Dolan and Moré [8] for comparing a set of methods
over a large set of test cases with regard to a specific performance metric. The
essential idea behind performance profiles (which we review below) is to use a
cumulative distribution function for a performance metric, instead of, for example,

taking averages or sum-totals over all the test cases.

Let S denote the set of methods (solvers) being compared, P denote the set of test
cases (problems) used, and ¢ denote the metric of interest, which is desired to be
as small as possible. For a specific method s € S and a specific problem p € P,
let ¢, ; denote the quantity with regard to metric ¢ used by method s in solving
problem p. Similarly, let ¢, ¢ correspond to the best performance by any solver in
S on the problem p. For example, if the performance metric of interest is runtime
of algorithms, then ¢, ; is the time used by algorithm s in solving problem p, and
i), s 1s the time used by the fastest algorithm in S in solving the problem p. The
ratio t,, . /17 ¢ is known as the performance ratio of method s on problem p and is
be denoted by 7, ;. The lower the value of r, ;, the closer method s is to the best
method in S for solving problem p. In particular, 1, ; = 1 means that method s is

the best solver in .S for problem p. Now define a function p as follows.

ps(T) = |P'|/|P| ~ where  P'={peP:r,<r1}

The value p,(7) is then the probability for solver s € S that the performance ratio
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rp.s 18 within a factor of 7 of the best possible ratio, and the function p, is the
cumulative distribution function for the performance ratio. In the performace profile
plots presented in this section we label the axis corresponding to p,(7) as “Fraction

of wins”.

4.3.1 Fix color choice strategy and communication mode, vary other parameters

In our first set of experiments, we compare the performance (in terms of runtime
and number of colors) of configurations of SPCFRAMEWORK obtained by fixing
the color selection strategy to be First Fit and the communication mode to be Cus-

tomized and by varying the remaining three parameters listed in Table 4.

Figure 1 shows runtime performance profile plots (for various number of proces-
sors) of these five configurations. Figure 2 shows similar plots for number of colors,
where, in addition to the five parallel configurations, a sequential FF algorithm is
included as a baseline. The test set in both figures is the set of application graphs

listed in Table 2 and the experiments are conducted on the Itanium 2 cluster.

We illustrate how performance profiles are to be “read” using Figure 2(c) as an
example. In that example, one can see that for nearly every testcase, FIAC has
the least runtime among the five algorithms being compared (see the values on the
vertical line 7 = 1). In nearly 90% of the cases, FISC is nearly equally fast. Suppose
we are interested in identifying methods that would solve every testcase within a
factor of 1.2 of the best time. Then FBAC would clearly join the company of FIAC
and FISC. In general, Figure 1 clearly shows that Algorithms FIAC and FISC are
the fastest among the five for every value of p and are almost indistinguishable from

each other. The two algorithms are very closely followed by FBAC.
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Fig. 1. Algorithms compared: Five variants of SPCFRAMEWORK. Plots: Performance pro-

files. Metric: Runtime. 7est set: (a) through (e), application graphs listed in Table 2; (f), set

of all processor-graph pairs (p, G), for p € {8,16,24, 32,40} and G drawn from Table 2.

Platform: Itanium 2. s = 800.

In terms of number of colors, Figure 2 shows that FBAC is the best candidate.

Its performance is almost as good as the sequential algorithm. A major reason
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for this rather impressive performance is that algorithm FBAC has the flavor of

a Largest Degree First sequential algorithm, since vertices of large degree are in
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general likely to be boundary vertices in a partition, and these are colored first in
the FBAC configuration. In the sequential baseline algorithm, on the other hand,
vertices are colored in their natural order. Further in Figure 2, we observe that al-
gorithms FUAC, FIAC, and FISC have fairly similar behavior with each other, and
in general use 5% to 15% more colors than that used by the sequential algorithm.
This in itself is a rather “good” performance considering the facts that the number
of colors used by a sequential algorithm is very close to the average degree in the
test graphs (see Table 2) and that existing parallel (distributed) coloring algorithms

commonly try to only bound the number by maximum degree.

Based on observations made from Figures 1 and 2, we pick the two algorithms
FIAC and FBAC as the most preferred choices, which in turn offer a runtime-
quality tradeoff. We use these algorithms in the rest of the experiments described

in this section.

4.3.2 Comparison with related algorithms

In our second set of experiments, whose results are summarized in the performance
profile plots shown in Figures 3 and 4, we compare FIAC and FBAC with the three
other algorithms in our study: JP, SCR, and SBC. A more elaborate set of experi-

mental data comparing these algorithms is available in Tables 5-7 in the Appendix.

The conclusion to be drawn from the runtime plots in Figure 3 is straightforward:
algorithms FIAC and FBAC significantly outperform their competitors, which could
further be ranked in a decreasing order of execution speed as SCR, JP, and SBC.
The underlying reasons for this phenomenon are obvious, but it is worth pointing

out that the relative slowness of the JP algorithm is due to many rounds it requires.
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In terms of number of colors, Figure 4 shows that, in general, algorithms JP and
SCR use (slightly) fewer colors than both FBAC and FIAC. Notice that the differ-
ence in the quality of the solution obtained by the various algorithms here is fairly
marginal: the 7 values for more than 90% of the test cases range 1 between 1.15,
indicating that the worst algorithm (FIAC) uses in the worst case, only 15% more

colors than that used by the best algorithm (JP).

4.3.3 Effects of color selection

The purpose of our third set of experiments is to compare the FF and SFF color
selection strategies while using the FIAC, SIAC, FBAC and SBAC configurations.
For SFF, we used the number of colors obtained by running the sequential FF al-
gorithm as our estimate for K. Figure 5(a) shows performance profile plots corre-

sponding to these experiments.

As can be seen in Figure 5(a), there is little difference in runtime between FF and
SFF when used in combination with an interior-first coloring order (FIAC), but with
boundary-first ordering (FBAC), SFF is slightly faster. This is expected since SFF
is likely to involve fewer conflicts than FF. Figure 5(b) shows, again as expected,

that SFF uses more colors than FF in both cases.

4.3.4 Effects of communication mode

In the fourth set of experiments we consider the FIAC and FIAB configurations to
compare the two communication modes, Customized and Broadcast. We consider
three graphs: the largest application graph ldoor from Table 2 and the two random
graphs rand-1 and rand-4 (which are of varying density) from Table 3. These ex-

amples are chosen to be representatives of well partition-able (requiring low com-
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Fig. 3. Algorithms compared: two variants of SPCFRAMEWORK (FIAC and FBAC) and

algorithms SCR, SBC and JP. Plots: Performance profiles. Metric: Runtime. Test set:

(a) through (e), graphs listed in Table 2; (f), set of all processor-graph pairs (p, G), for

p € {8,16,24,32,40} and G drawn from Table 2. Platform: Itanium 2. s = 800.

munication) and poorly partition-able (requiring high communication) graphs. As

can be seen in the tables in the Appendix, the ratio of boundary vertices to total
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for p € {8,16,24, 32,40} and G drawn from Table 2. Platform: Itanium 2. s = 800.

vertices for p = 24 (say) is only 4% for ldoor whereas it is nearly 100% for the

random graphs.
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Figure 6 shows speedup plots for algorithms FIAC and FIAB on the two test plat-

forms Itanium 2 and Pentium 4. One can see that the difference in performance be-

tween FIAB and FIAC is negligible for the well-partitionable graph ldoor, whereas

FIAB is in general better than FIAC for the random graphs, the difference being

more pronounced for the denser graph rand-4.
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using s = 800.

4.3.5 Strong scalability

From the four set of experiments we have discussed thus far, we can fairly conclude
that algorithms FIAC and FBAC are the best choices (offering runtime-quality
tradeoff) for well-partitionable graphs, while the corresponding choices for poorly-
partitionable graphs are FIAB and FBAB. The results we presented so far showed
how the various algorithms compared against each other, but not the performance
of each considered separately. We now present results where the latter aspect is

addressed for appropriate extensions of the configurations FIAC and FBAC.
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Application graphs Figures 7(a) through 7(c) show strong scalability results re-
garding algorithms FIAC, FBAC, and JP on five test graphs drawn from Table 2.
The test graphs are selected from five different application areas, and each graph is
the largest in its group. The test platform used is Itanium 2. A similar set of results
for the Pentium 4 platform is shown in Figures 7(d)-7(f). Figures 7(g)-7(i) show
the number of colors used by the the three algorithms, each normalized with respect

to the number obtained using a sequential FF algorithm.

The results in Figure 7 show that both FIAC and FBAC scale well for these graphs
in both platforms. In general we observe higher speedup for sparser graphs. The JP
algorithm showed some speedup, albeit small, largely due to the well-partitionability
of the graphs. We also observe that the number of colors used by the three algo-

rithms is fairly close the number used by a sequential algorithm.

Synthetic graphs Figure 8 shows a set of figures similar to those shown in Fig-
ure 7, except now that the algorithms considered are FIAB, FBAB and JP and the
test graphs are five synthetic graphs drawn from Table 3. One of the five graphs,
planar-1, is extremely well partitionable (almost all of its vertices are interior in a
given partition, see Table 8). The opposite is true for the other four graphs, rand-1,

rand-4, clig-1 and clig-3.

The strong scalability results in Figures 8(a) through 8(f) agree well with one’s ex-
pectation: good speedup on well-partitionable graphs and poor speedup on poorly-
partitionable graphs. The fact that both FIAB and FBAB actually yielded some rea-
sonable speedup (especially on the P4 platform) for the random and clique-based
graphs, however, is worth emphasizing: for such graphs the speedup stems solely

from the “core” algorithm in SPCFRAMEWORK, without any contribution from
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Fig. 8. (a)-(f) Speedup (g)-(i) normalized number of colors on select synthetic graphs using

s =125.

parallelization due to partitioning.

Speedup results displayed in Figures 7 and 8, also reveal the impact of the platforms
on the performance of the considered algorithms. For unstructured graphs that that
necessitate excessive communication due to large number of boundary vertices,
Pentium 4 cluster with its lower latency and high bandwith network (supported by
a very efficient MPI implementation [26]) provides an environment that yields bet-
ter scalability. On the other hand, while linear or even super-linear speedup can be
achieved with well-partitionable graphs on both platforms, Itanium 2 cluster pro-

vides an even better enviroment for such graphs due to its more effective memory
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Fig. 9. Weak scaling of algorithms FIAB and JP on select synthetic graphs. s = 125.

system thanks to its larger cache.

4.3.6 Weak scalability

Our final experimental result is on weak scalability, where both problem size and
number of processors are increased in proportion so as to result in nearly constant
runtime. Figure 9 shows weak scaling result on random and planar graphs. (The

complete experimental data is available in Table 9).

From Figure 9 we observe that runtime grows slowly with increasing number of
processors for both JP and FIAB on planar graphs, but there is a dramatic difference
for random graphs. While FIAB takes only slightly more than a constant time on
planar graphs, the runtime for JP grows almost linearly with number of processors.
This demonstrates that our framework (FIAB in particular) is clearly more scalable
than JP on random graphs. This is due to the large number of boundary vertices,

where JP performs poorly due to the many rounds it requires.
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5 Conclusion

We have developed an efficient and scalable parallel graph coloring algorithmic
framework suitable for distributed memory computers. The framework is tunable
to suit the structure of the graph being colored and the specifics of the hardware

being used.

The scalability of several algorithms developed using the framework has been ex-
perimentally demonstrated on platforms of modest size processors. For almost all
graphs tested in our experiments, the variants of our framework yielded fairly good
speedup with increasing number of processors and the number of colors used was
close to the number used by a sequential greedy algorithm. Furthermore, we ob-
served that customizing inter-processor communication and using a superstep size
in the order of a thousand improved the scalability of the algorithms for structured
graphs. For unstructured graphs, good performance was observed by using a broad-
cast based communication mode and using a superstep size close to a hundred. The
computational results we obtained also suggest that, coloring interior vertices first
gives a faster and slightly more scalable algorithm whereas an algorithm in which

boundary vertices are colored first uses fewer colors.

Our implementation has been incorporated into Zoltan, a freely available parallel
data management and load-balancing library [7]. We plan to extend our work to
other coloring problems such as the distance-2 graph coloring and the hypergraph
coloring problems, which arise in the efficient computation of derivative matrices.
A preliminary work we have done on parallel distance-2 coloring is available in

[5].
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A Appendix

name speedup colors rounds ‘VTB“ % (%)

FIAC FBAC JP SCR SBC FIAC FBAC JP SCR FTAC FBAC JP (%) FIAC FBAC JP
pope-br-4 45 37 2.5 4.6 2.6 21 20 19 20 4 4 22 22 56 56 67
er-gre-4 4.7 44 33 4.7 22 22 19 19 19 4 5 21 27 56 56 66
apoal-4 5.3 5.0 4.0 5.0 2.9 21 20 20 20 5 5 22 18 43 43 53
144 58 5.6 5.1 6.0 43 13 12 12 12 4 4 14 10 34 33 39
598a 6.2 5.9 52 6.1 4.6 12 12 11 11 4 4 13 9 30 30 38
auto 6.4 6.3 5.2 7.0 5.6 13 13 13 13 4 5 14 6 28 27 39
bmw3_2 6.6 6.3 5.6 6.6 49 51 48 48 48 5 5 30 6 20 20 26
bmw7stl 6.5 6.1 5.4 6.6 4.7 54 53 52 54 5 6 31 6 21 23 31
inlinel 6.9 6.3 5.0 6.8 5.6 58 52 51 51 5 5 45 4 16 19 25
pwik 6.8 6.7 6.0 6.8 58 45 43 42 45 5 6 30 3 15 12 22
nasasrb 6.0 5.6 4.5 6.1 4.0 38 40 40 40 5 5 30 10 29 29 43
ct20stif 5.4 43 3.8 5.4 3.1 49 50 48 49 5 5 39 15 43 50 55
hood 6.9 6.8 58 7.0 6.0 45 42 42 42 5 5 29 3 14 12 23
msdoor 7.1 6.8 6.0 7.2 6.3 42 42 42 42 5 5 29 2 11 12 16
Idoor 7.3 7.1 6.1 7.3 6.8 47 43 43 42 5 5 29 2 8 8 21
pkutsk10 6.1 5.6 4.6 6.0 3.6 50 46 45 46 5 7 39 12 30 33 45
pkutsk11 6.0 5.7 4.5 5.9 33 66 66 66 66 5 5 43 13 35 35 48
pkutsk13 5.8 5.2 42 5.6 2.9 57 57 57 57 4 5 46 16 38 41 52
shipsec 6.2 6.1 5.1 6.1 4.0 53 50 48 50 6 6 36 10 28 27 39
shipsec5 6.1 5.8 52 6.1 3.9 54 48 49 51 5 5 36 10 29 28 36
shipsec8 6.0 5.7 4.8 6.0 3.7 54 50 48 50 5 6 39 13 33 32 44

Table A.1

Comparison of algorithms for the application graphs on the Itanium 2 cluster using s = 800

and p = 8. Vp denotes the total number of boundary vertices after partitioning.

Vil time on Vg
name speedup colors rounds v T tme

FTAC FBAC TP SCR SBC FTAC FBAC TP SCR FTAC FBAC TP (%) FIAC AC TP
popc-br-4 6.1 48 1.5 43 1.9 20 20 20 19 4 5 22 37 82 81 81
er-gre-4 7.4 6.1 3.2 4.9 1.6 20 20 21 20 4 5 20 43 81 83 91
apoal-4 9.8 9.0 4.8 6.8 2.2 21 20 21 20 5 5 25 32 71 68 83
144 123 10.4 72 85 39 13 13 13 12 4 5 15 18 58 61 73
598a 11.8 9.7 6.8 8.2 3.9 12 12 11 12 4 5 13 17 61 64 76
auto 15.2 13.4 9.3 11.9 5.6 14 13 13 13 4 5 15 13 49 51 65
bmw32 T6.1 14.4 9.6 133 53 49 49 48 48 5 5 31 11 38 38 59
bmw7stl 14.9 12.9 3.6 12.8 4.6 49 52 48 54 5 6 34 13 44 47 48
inlinel 17.0 15.2 8.7 14.8 5.4 57 52 51 52 6 6 58 10 35 36 64
pwik 16.6 14.8 10.4 12.6 5.4 45 43 41 44 5 6 32 11 36 38 58
nasasrb 11.8 10.1 5.0 8.2 2.7 45 41 39 38 5 5 32 25 63 63 83
ct20stif 10.4 8.4 3.7 7.7 2.3 54 51 47 48 5 6 43 27 69 66 84
hood 172 15.6 10.0 153 6.5 43 42 42 42 5 6 31 8 32 34 58
msdoor 18.0 16.8 11.2 17.1 9.2 46 42 42 42 5 5 30 5 27 28 52
Idoor 19.0 18.3 12.2 18.3 11.0 49 42 42 42 6 6 32 4 22 21 48
pkutsk10 13.0 1.1 6.3 9.6 2.9 48 45 44 47 5 5 33 23 58 58 76
pkutsk11 12.5 10.7 7.0 9.3 22 66 65 62 61 5 5 48 26 64 64 83
pkutsk13 12.3 9.9 7.5 9.2 2.3 57 57 57 57 5 6 49 29 64 65 82
shipsecl 138 T1.8 77 9.4 31 50 48 47 47 5 6 36 21 33 54 71
shipsec5 14.5 12.7 8.3 10.2 35 53 52 49 48 5 6 37 18 49 51 67
shipsec8 13.2 11.3 6.2 9.0 2.8 55 53 47 49 5 5 40 24 57 58 90

Table A.2

Comparison of algorithms for the application graphs on the Itanium 2 cluster using s = 800

and p = 24. V denotes the total number of boundary vertices after partitioning.
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name speedup colors rounds ‘VTB“ “:2;]07:‘1“‘?;3 (%)

FIAC FBAC JP SCR SBC FTAC FBAC TP SCR FTAC FBAC TP (%) FTAC FBAC TP
pope-br-4 5.4 45 1.2 3.0 1.5 22 21 19 20 4 5 24 46 91 90 97
er-gre-4 6.8 6.5 2.1 39 1.3 21 20 20 18 5 5 24 51 90 89 97
apoal-4 11.2 10.3 4.5 59 1.8 21 20 20 20 5 5 22 38 81 78 91
144 13.1 12.0 6.2 7.8 33 13 12 12 12 5 5 17 22 75 74 87
598a 11.6 10.5 54 7.1 33 13 12 11 11 5 5 15 22 78 78 88
auto 19.6 16.5 14.4 12.2 4.8 14 13 13 13 4 5 16 16 62 64 76
bmw32 218 18.6 92 145 43 48 48 48 48 5 6 34 14 52 51 76
bmw7stl 19.2 15.2 75 12.6 3.6 54 48 49 53 5 7 35 19 59 63 81
inlinel 24.1 19.9 9.9 16.7 4.5 57 55 51 51 5 6 57 14 48 51 77
pwtk 21.1 19.4 10.4 12.6 4.1 47 44 42 44 6 6 34 16 54 55 78
nasasrb 13.2 10.9 4.6 72 2.1 43 40 38 39 5 6 33 32 77 77 94
ct20stif 11.8 10.3 3.6 7.2 1.8 52 51 48 48 5 5 43 36 81 77 94
hood 23.6 20.2 10.8 17.1 55 45 42 42 42 5 6 30 11 46 49 74
msdoor 26.1 239 10.9 21.3 8.4 47 42 42 42 5 5 40 7 37 38 72
Idoor 27.8 273 15.2 243 10.1 47 42 42 42 6 5 31 5 32 31 61
pkutsk10 14.7 14.6 50 9.4 2.5 48 47 44 48 6 5 39 28 73 68 89
pkutsk11 14.8 13.7 43 8.8 1.8 64 60 58 62 6 5 55 33 77 72 91
pkutsk13 15.9 13.8 4.9 9.3 1.8 58 57 57 57 5 5 54 37 75 72 90
shipsec 17.9 15.2 6.5 9.7 2.6 53 50 45 49 5 6 44 26 66 66 85
shipsec5 19.7 16.6 84 10.7 2.9 54 53 49 50 5 6 38 23 61 62 81
shipsec8 16.6 14.7 6.0 9.2 2.2 54 52 50 51 6 5 42 29 70 68 87

Table A.3

Comparison of algorithms for the application graphs on the Itanium 2 cluster using s = 800

and p = 40. Vg denotes the total number of boundary vertices after partitioning.

P name ‘IVT% colors speedup on Itanium 2 speedup on Pentium 4
(%) FIAC FBAC JP FIAC FBAC JP FTAC FBAC JP
rand-1 99.5 9 9 9 2.8 2.8 0.8 5.1 5.1 1.6
rand-2 100.0 16 16 15 3.1 3.1 0.5 5.7 5.6 13
rand-3 100.0 21 21 21 32 3.1 0.5 5.8 5.8 13
8 rand-4 100.0 27 26 26 34 3.8 0.6 6.0 6.0 13
plan-1 0.0 9 9 9 114 1.9 12.8 11.2 11.1 9.0
clig-1 64.8 41 41 41 4.9 4.9 3.0 4.1 4.0 23
clig-2 100.0 42 42 42 2.4 2.4 1.0 2.1 2.0 0.6
clig-3 100.0 43 43 42 2.5 2.6 0.8 2.3 2.2 0.5
rand-T 99.8 9 10 9 4.6 4.7 1.7 9.4 9.3 35
rand-2 100.0 16 16 15 6.2 6.2 1.1 12.5 12.2 2.5
rand-3 100.0 22 22 21 6.3 6.4 14 12.5 13.0 22
24 rand-4 100.0 27 27 25 75 73 1.5 14.4 14.5 20
plan-1 0.1 9 9 9 37.0 333 279 36.3 31.9 20.2
clig-1 60.3 42 41 41 8.7 7.6 4.1 5.1 5.0 24
clig-2 100.0 42 42 42 29 2.9 1.3 2.1 2.0 0.7
clig-3 100.0 43 43 43 2.9 2.9 1.0 2.1 2.0 0.5
rand-1 99.8 10 9 9 52 52 24 10.7 10.7 48
rand-2 100.0 17 17 15 72 6.7 1.4 16.5 16.3 33
rand-3 100.0 23 23 20 8.2 8.0 1.1 18.4 18.5 2.8
40 rand-4 100.0 28 28 26 10.0 9.1 1.1 20.4 19.7 2.6
plan-1 0.2 9 8 9 53.4 52.6 345 50.6 43.1 24.1
clig-1 63.3 41 41 41 73 6.8 35 4.1 4.4 2.0
clig-2 100.0 42 42 42 2.9 29 1.1 1.8 1.8 0.6
clig-3 100.0 43 43 43 3.0 3.0 0.9 1.9 1.8 0.5

Table A.4

Comparison of algorithms for the synthetic graphs using s = 125. Vg denotes the total

number of boundary vertices after partitioning.

name degree seq. p Vr Ve colors run time on Itanium 2 run time on Pentium 4
max avg colors FIAC FBAC JP FIAC FBAC JP FIAC FBAC
rand-5 80 50 20 T 10,000 0 20 20 20 26 26 26 10 10 10
rand-6 79 50 20 2 0 20,000 20 20 20 29 29 86 18 17 64
rand-7 82 50 20 8 0 80,000 22 22 21 48 80 375 40 46 284
rand-8 91 50 21 16 0 160,000 22 22 20 106 110 742 85 88 544
rand-9 86 50 21 24 0 240,000 22 22 21 178 142 1146 120 121 759
rand-10 86 50 20 32 0 320,000 23 22 21 196 193 1469 140 140 889
rand-11 84 50 20 40 0 400,000 23 23 20 227 232 1695 156 155 1007
plan-2 35 6 8 1 102,093 0 8 8 8 49 49 49 28 28 28
plan-3 29 6 8 2 101,988 74 8 8 38 38 39 29 31 33
plan-4 32 6 9 8 102,248 1,521 9 9 9 43 62 50 37 39 51
plan-5 37 6 8 16 101,448 2,811 8 8 8 69 69 87 45 51 79
plan-6 40 6 9 24 101,522 4,539 9 9 9 72 76 102 51 61 103
plan-7 43 6 9 32 101,394 6,347 9 9 9 83 83 116 60 71 123
plan-8 40 6 9 40 101,655 6,750 9 8 9 90 91 139 77 86 155
Table A.5

Weak scaling on synthetic graphs using s = 125. V7 is the average number of internal ver-

tices on each processor, and V3 is the total number of boundary vertices after partitioning.
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